Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2.
نویسندگان
چکیده
G protein-gated, inwardly rectifying K+ channels (GIRK) are effectors of G protein-coupled receptors for neurotransmitters and hormones and may play an important role in the regulation of neuronal excitability. GIRK channels may be important in neurodevelopment, as suggested by the recent finding that a point mutation in the pore region of GIRK2 (G156S) is responsible for the weaver (wv) phenotype. The GIRK2 G156S gene gives rise to channels that exhibit a loss of K+ selectivity and may also exert dominant-negative effects on G(betagamma)-activated K+ currents. To investigate the physiological role of GIRK2, we generated mutant mice lacking GIRK2. Unlike wv/wv mutant mice, GIRK2 -/- mice are morphologically indistinguishable from wild-type mice, suggesting that the wv phenotype is likely due to abnormal GIRK2 function. Like wv/wv mice, GIRK2 -/- mice have much reduced GIRK1 expression in the brain. They also develop spontaneous seizures and are more susceptible to pharmacologically induced seizures using a gamma-aminobutyric acid antagonist. Moreover, wv/- mice exhibit much milder cerebellar abnormalities than wv/wv mice, indicating a dosage effect of the GIRK2 G156S mutation. Our results indicate that the weaver phenotypes arise from a gain-of-function mutation of GIRK2 and that GIRK1 and GIRK2 are important mediators of neuronal excitability in vivo.
منابع مشابه
Defective gamma-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice.
Stimulation of inhibitory neurotransmitter receptors, such as gamma-aminobutyric acid type B (GABAB) receptors, activates G protein-gated inwardly rectifying K+ channels (GIRK) which, in turn, influence membrane excitability. Seizure activity has been reported in a Girk2 null mutant mouse lacking GIRK2 channels but showing normal cerebellar development as well as in the weaver mouse, which has ...
متن کاملG Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons
To study the role of G protein-coupled, inwardly rectifying K+ (GIRK) channels in mediating neurotransmitter actions in hippocampal neurons, we have examined slices from transgenic mice lacking the GIRK2 gene. The outward currents evoked by agonists for GABA(B) receptors, 5HT1A receptors, and adenosine A1 receptors were essentially absent in mutant mice, while the inward current evoked by musca...
متن کاملThe weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells.
The weaver mutation in mice results in a severe ataxia that is attributable to the degeneration of cerebellar granule cells and dopaminergic neurons in the substantia nigra. Recent genetic studies indicate that the GIRK2 gene is altered in weaver. This gene codes for a G-protein-activated, inwardly rectifying K+ channel protein (8). The mutation results in a single amino acid substitution (glyc...
متن کاملFunctional Effects of the Mouse weaver Mutation on G Protein–Gated Inwardly Rectifying K+ Channels
The weaver mutation corresponds to a substitution of glycine to serine in the H5 region of a G protein-gated inwardly rectifying K+ channel gene (GIRK2). By studying mutant GIRK2 weaver homomultimeric channels and heteromultimeric channels comprised of GIRK2 weaver and GIRK1 in Xenopus oocytes, we found that GIRK2 weaver homomultimeric channels lose their selectivity for K+ ions, giving rise to...
متن کاملHeteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain.
The weaver (wv) gene (GIRK2) is a member of the G-protein-gated inwardly rectifying potassium (GIRK) channel family, known effectors in the signal transduction pathway of neurotransmitters such as acetylcholine, dopamine, opioid peptides, and substance P in modulation of neurotransmitter release and neuronal excitability. GIRK2 immunoreactivity is found in but not limited to brain regions known...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 3 شماره
صفحات -
تاریخ انتشار 1997